

Revised

2013 Marking Scheme

Grade	Mark Re	equired	° condidatos achievina anada
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
А	85+	68.0%	35.1%
В	72+	57.6%	30.6%
С	60+	48.0%	17.1%
D	54+	43.2%	6.3%
No award	< 54	<43.2%	10.8%

Section:	Multiple Choice		Extended An	swer	Investigation	
Average Mark:	21.4	/30	39.0	/70	16.7	/25

2	013	Rev	ised Adv H Chem Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	С	88 oldAH=90	 A Ionisation Energy remove one mole of electrons B Ionisation Energy remove one mole of electrons C Removal of one from of electrons from one mole of 1+ gaseous ions D Ionisation Energy remove one mole of electrons
2	В	75 oldah=77	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity 3x108m s ⁻¹
3	A	75 oldah=74	⊠A Copper (II) Sulphate gives blue-green flame colour (λ=325nm) ∴ highest frequency ⊠B Potassium Chloride gives lilac flame colour (λ=405nm) ⊠C Barium Chloride gives green flame colour (λ=554nm) ⊠D Lithium Sulphate gives crimson flame colour (λ=671nm) ∴ lowest frequency
4	D	69 oldaH=62	$ \begin{array}{ c c c c c c } \hline Colour & Violet & Indigo & Blue & Green & Yellow & Orange & Red \\ \hline Velocity & 3x10^8ms^{-1} \\ \hline Wavelength & 450nm & $
5	A	81 oldAH=70	 ☑ A Hund's Rule: orbitals fill up single rooms first to maximise the number of parallel spins ☑ B Aufbau principle: Orbitals fill up in order of lowest energy (15,25,2p,35,3p,45,3d,4p,55,4d,5p,6s,4f, etc) ☑ C Pauli Exclusion Principle: No electron has the same 4 quantum numbers ☑ D Valence Shell Electron Pair Repulsion Theory: predicts geometry of molecules
6	A	56 oldah=62	 ☑A 3 electrons in 3rd shell ∴ element is in group 3 ☑B 5 electrons in 3rd shell ∴ element is in group 5 ☑C Incomplete d-shell ∴ element is a transition metal ☑D 5 electrons in 4th shell ∴ element is in group 5
7	С	65 oldah=60	 A Mass Spectroscopy: mass measured by the bending of charged particles in electric field B IR-spectroscopy: absorbed IR radiation of particular wavenumber vibrates particular bonds C Emission Spectroscopy: measuring wavelengths produced as excited electrons drop down energy levels D Proton NMR: flipping of spins in a hydrogen nuclei in a strong magnetic field
8	В	72 oldAH=79	区A 2 lone pairs (both on oxygen atom) 図B 3 lone pairs (all on chlorine atom) 区C 1 lone pair (on nitrogen atom) 区D 2 lone pairs (both on oxygen atom)
9	С	69 oldAH=63	 ☑A SF4 has 5 pairs (4 bonding and 1 non-bonding) ☑B NH4⁺ has 4 pairs (4 bonding and 0 non-bonding) ∴ tetrahedral ☑C XeF4 has 6 pairs (4 bonding and 2 non-bonding) ∴ square planar ☑D AlH4⁻ has 4 pairs (4 bonding and 0 non-bonding) ∴ tetrahedral
10	В	71 oldah=69	■ A Cu ²⁺ ions → Cu metal (oxidation state: 2→0) ■ B Cu ²⁺ ions → Cu ²⁺ ions in a complex with NH ₃ (oxidation state: 2→2) ■ C Cu ²⁺ ions → Cu ⁺ ions (oxidation state: 2→1) ■ D Cu metal → Cu ²⁺ ions (oxidation state: 0→2)
11	A	50	no. of mol = volume x concentration = 0.1 litres x 0.5 mol l ⁻¹ = 0.05mol 1mol AgCl = (1x107.9)+(1x35.5) = 143.4g $2AgNO_3 + CaCl_2 \longrightarrow Ca(NO_3)_2 + 2AgCl(s)$ 2mol 1mol 0.05mol 0.05mol mass = no. of mol x gfm = 0.05 x 143.4 = 7.17g

	6	50	n o. of mol K ⁺ ions = volume x concentration = 1 litre x 0.1 mol l ⁻¹ = 0.1 mol K ⁺ ions 1 mol K ₂ SO ₄ contains 2 mol K ⁺ ions \therefore 0.05 mol K ₂ SO ₄ contains 0.1 mol K ⁺ ions
12	В	58 oldah=54	volume = $\frac{\text{no. of mol}}{\text{concentration}} = \frac{0.05 \text{ mol}}{0.2 \text{ mol } l^{-1}} = 0.25 \text{ litres} = 250 \text{ cm}^3$
13	С	83 oldAH=80	 ☑ A Catalysts do not alter the position of equilibrium ☑ B Adding acid will move equilibrium to left to remove the additional product (H⁺) ☑ C Alkali will neutralise H⁺ ions and equilibrium will move to right to replace H⁺ ions ☑ D Adding dihydrogenphosphate ions (H₂PO₄⁻) will move equilibrium to left
14	A	90 oldAH=91	 A increasing temperature will alter the solubility of caffeine different rate B adding more caffeine will not alter the proportion of caffeine in the solvents C increasing the volume of a solvent does not alter the final concentration of caffeine D increasing the volume of a solvent does not alter the final concentration of caffeine
15	D	83 oldaH=85	partition coefficient = $\frac{[X]_{hexane}}{[X]_{water}} = \frac{13}{6} = 2.17$
16	С	70 oldah=72	 ☑ A pH of ethanoic acid will increase towards pH=7 during dilution ☑ B pK_a is a measure of the degree of dissociation and dilution does not alter pK_a ☑ C [H⁺] will decrease and pH increases towards pH=7 during dilution ☑ D Dilution does not alter the degree of dissociation
17	D	74 oldAH=71	Ethanoate CH ₃ COO ⁻ ions join up with H ⁺ ions and form molecules of ethanoic acid CH ₃ COOH as ethanoic acid is a weak acid. The removal of H ⁺ ions from the equilibrium will result in the equilibrium moving to left to replace these H ⁺ ions and this results in more reverse reaction and less products in the mixture (less iodine)
18	A	71	Potassium hydroxide and ethanoic acid will neutralise to form potassium ethanoate and will have an alkaline pH. The indicator chosen should have a pH range which changes colour in the alkaline region of the pH scale.
19	В	66	 A increases in free energy would lead to AG>O (stopping the spontaneous process) B spontaneous processes always have an increase in disorder (entropy) C the total enthalpy of a process should always be the same D spontaneous endothermic reactions occur (with a large increase in disorder)
20	D	47 oldah=57	 ☑ A mpt NaCl = 801°C ∴ NaCl is a solid at 750°C ∴ solid have lower disorder/entropy ☑ B mpt CaCl₂ = 775°C ∴ CaCl₂ is a solid at 750°C ∴ solid have lower disorder/entropy ☑ C mpt KCl = 770°C ∴ KCl is a solid at 750°C ∴ solid have lower disorder/entropy ☑ D mpt MgCl₂= 714°C ∴ MgCl₂ is a liquid at 750°C ∴ liquids have higher disorder/entropy
21	С	85	 A refluxing condenses escaping vapours back into a reaction vessel B distillation separates liquids with different boiling points C recrystallisation is used to separate substances from impurities in a sample C hromatography separates chemicals of different solubility and size
22	D	87 oldAH=82	Oxidation is one of the following reactions: primary alcohol \longrightarrow aldehyde \longrightarrow carboxylic acid secondary alcohol \longrightarrow ketone \longrightarrow tertiary alcohol \longrightarrow Butan-1-ol is a primary alcohol and butanoic acid is a carboxylic acid. Reduction is the reverse reaction of oxidation.
23	A	84 oldAH=87	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

20	13 Revised	Adv H Chem Marking Scheme							
Long Qu	Answer	Reasoning							
1a	Equal in energy	Degenerate orbitals are equal in energy. The three 2p orbitals in the 2 nd shell are equal in energy and the electrons will fill them up singly in any order as they are equal in energy to each other.							
1b	1 1 1 1s 2s 2p	According to the aufbau principle, electrons fill up in orbitals of lowest energy first 1s then 2s then 2p (then 3s then 3p then 4s then 3d) According to Hund's Riles, orbitals fill up single with parallel spins first.							
1c	sp ³ hybridisation	One s orbital and three p orbitals in the 2 nd shell of carbon atoms hybridise to form 4 sp ³ hybrid orbitals							
2a	-220.3 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)} - \Sigma S^{\circ}_{(reactants)}$ $= (2\times27.0) + (1\times5.70) - ((2\times33.0) + (1\times214))$ $= 54.0 + 5.7 - (66.0 + 214)$ $= 59.7 - 280$ $= -220.3 \text{ J K}^{-1} \text{ mol}^{-1}$							
2b	-526.4 kJ mol ⁻¹	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
3	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are 							
4a	Answer to include:	A series of standard solutions of different known concentrations of potassium permanganate are made up and their absorbencies measured.							
4b	Green or 500–560nm	The solutions appear purple as the green light is removed by atomic adsorption and the red and blue light is transmitted giving a purple colour.							
4c	0.29%	adsorption and the red and blue light is transmitted giving a purple colour. From graph: Absorbance = 0.26 \therefore [MnO ₄ ⁻] = 1.3×10^{-4} mol l ⁻¹ no. of mol = volume x concentration = 0.1 litres x 1.3×10^{-4} mol l ⁻¹ = 1.3×10^{-5} mol mass of Mn = no. of mol x gfm = 1.3×10^{-5} mol x 54.9g mol ⁻¹ = 7.137×10^{-4} g %Mn = $\frac{\text{mass of Mn}}{\text{mass of steel}} \times 100 = \frac{0.0007137g}{0.245g} \times 100 = 0.29\%$							
4d	296 kJ mol ⁻¹	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{405 \times 10^{-9} \text{m}}$ = 295848.9 J mol ⁻¹ = 296 kJ mol ⁻¹							
5α	4	Each dimethylglyoxime molecule has two nitrogen atoms within its structure that have lone pairs of electrons which are donated to the central Ni ²⁺ ion in the complex. This gives a co-ordination number of four between the two dimethylglyoxime molecules and the Ni ²⁺ ion.							

		1 mol Ni(C4H7O2N2)2 = (1x58.7)+(8x12)+(14x1)+(4x16)+(4x14) = 58.7+96+14+64+56 = 288.7g Mass of Ni 0.040 mass of Ni 0.040 58.7 04015								
5b	19.8%	Mass of Ni in red precipitate = 0.942g × mass of complex = 0.942g × 58.7/288.7 = 0.1915g								
		%Ni in impure salt = <u>0.1915</u> × 100 = 19.8%								
5c(i)	Hexaaquanickel(II)	Hexaquanickel(II)								
5c(ii)	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁸	ectrons are removed from 4s before 3d: i atom: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2 \therefore Ni^{2+}$ ion: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$								
		Colour Red Orange Yellow Green Blue Violet								
	Red and blue light is	Wavelength (nm) 640-700 600-640 560-600 480-560 450-480 400-450 Peak 1 Peak 2 Peak 3								
5d(i)	absorbed Green light is transmitted	The graph show absorbance in the blue/violet region of the visible spectrum with a large peak around 400-450nm regionThe graph show absorbance in the red region of the visible spectrum with a large peak around 640-700 regionThe graph show absorbance in infra-red region of the visible spectrum with a large peak a00-900nm regionblue light is absorbed by complexred light is absorbed by complexno effect: outwith visible spectrumConclusion from Peak 1 and Peak 2:								
	NH3 splits d-orbitals more	red and blue light are absorbed and remaining green light is transmitted NH3 has a more powerful ligand field splitting effect from the spectrochemical								
5d(ii)	Shorter wavelength absorbed to supply more energy	series than H ₂ O and splits the 3d orbitals in the Ni ²⁺ to a greater degree. The d \rightarrow d transitions require more energy and the lower wavelength is absorbed to supply the greater energy to make the d \rightarrow d transitions.								
	green/blue	Colour Red Orange Yellow Green Blue Violet								
5d(iii)		Wavelength (nm) 640-700 600-640 560-600 480-560 450-480 400-450 Major absorbance at 600nm orange wavelengths are absorbed <td< td=""></td<>								
6a	2.935	$\begin{array}{rcl} \therefore \ \mbox{green/blue wavelengths are transmitted} \\ pH &=& \frac{1}{2}pK_a & - & \frac{1}{2}log_{10} \ c \\ &=& (\frac{1}{2} \times 4.87) & - & \frac{1}{2} \times log_{10}(0.1) \\ &=& 2.435 & - & (-0.5) \\ &=& 2.935 \end{array}$								
6b	6.17	$C_{2}H_{5}COONa \text{ concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.20 \text{ mol}}{0.1 \text{ litres}} = 2 \text{ mol } l^{-1}$ $pH = pK_{a} - \log \frac{[acid]}{[salt]} = 4.87 - \log \frac{0.10 \text{ mol } l^{-1}}{2 \text{ mol } l^{-1}} = 4.87 - \log(0.05)$ $= 4.87 - (-1.301)$ $= 6.17$								
7a	C ₆ H ₈ N ₂	$H_{3}C \sim C = N \sim C + H$ $H_{3}C \sim C \sim N \sim C$ $H_{3}C \sim N \sim C$								
7b	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H H H C H Groups H H H H C H C H Groups H H H H C H C H C H C H C H C H C H C H								

		Aldehyde	Pher	ylethanal	2-	methylbutanal	3-me	thylbutan	al
7.	Phenylethanal	Structure $H, H, H, H, C, C,$, н -с` но `) с_ С_С -с` н н	н н н		о н н н -С-Н Н-С-С-С 		-H
7c	3 peaks due to three different proton environments	Peak Chemic Shift (ppm		-	Descr	iption	Relative Height of Peak	No of Hydrog in Group	jens
		3.2	ArC		CH2 group with alkyl R group on on end and aromatic group on other		2 2 Hydro in -CH2-		
		6.7	Ar	н	Aromati attached to		5 ⁵ hydrogen in -C6H5 grou		
		9.2	RC	р Н (Aldehyd attached to	le group alkyl group	1	1 hydroge in -CHO gro	
7.1	A	Agonists				use a biologica			cell
7d	Agonist	Antagonis	TC			receptor but events any oth			
		[C	¦H9Br]/r 8.0x10⁻'		NaOH]/m	iol l ⁻¹ Initi	al Rate /mo 0.15	l ⁻¹ s ⁻¹	
8 a(i)	1 or 1 st order		1.6×10 ⁻³	3	0.10 0.10		0.30		
						first order	kinetics al Rate /mo	11-11	
80(::)	Zero or no order		¦H9Br]/m 1.6x10 ⁻³	3	1aOH]/m 0.10		0.15	11-5-	
8a(ii)		Doubling []	1.6x10 ⁻³		0.20		0.30		
8b	Rate=k[C4H9Br]	Doubling [NaOH] does not change the rate ∴ zero order kinetics Rate = k[C4H9Br] ¹ [NaOH]° = k[C4H9Br]							
	187.5 s ⁻¹	rate = k[C ₄ H ₉ Br] ∴ k = $\frac{\text{rate}}{[C_4H_9Br]}$ = $\frac{0.15 \text{ mol } l^{-1} \text{ s}^{-1}}{8 \times 10^{-4} \text{ mol } l^{-1}}$ = 187.5 s ⁻¹							
8c	187.5 5								
8d	2-bromo-2-methylpropane (2-bromomethylpropane) Or tertiary structure		H7	2-bromob C2 Br	2H5	<u>I-bromo-2-methylp</u> CH ₃ CHC	H ₃	CH3	CH3
bu	Tertiary haloalkanes form more stable carbocation intermediates due to steric hindrance of the tertiary structure	primary hal	H oalkane	secondary ha	CH3 Iloalkane	primary haloalk	H ane te	CH rtiary haloalkar	13 ne
		involved in the r	rate determini	ing step where the	e nucleophilic	2 mechanism. 2 partic species (OH ⁻ ion) atto nary/secondary struc	ture. mech ture. ture.	y haloalkanes react anism. Carbocation: first in the RDS ar ucleophilic species as the planar carboo mediate to form all	ns are nd then (OH ⁻) cation
		CH₃—	CH₃ │ (↓ C—Br │ CH₃	carba interr Step1 C⊦	nediate 	:H3 :+ Br⁻ :H3			
8e	Mechanism showing:	2-bromo-2-n	Cł	Сн - - СН	3 -0 3	^{_Step 2} → CH H	CH3 	ОН	
		Determining St		•	•				-

11b(ii)	One answer from:	Impure starting n Reaction may not go t							transfer losses ibrium reaction	
		3		, ,	2 mark answer					
11c	Open Question Answer to Include:	Demonstrat understand involved. A the chemist logically con statement involved and	ark answer es a <u>good</u> ing of the chemistry good comprehension of ry has provided in a rect, including a of the principles I the application of spond to the problem.		Demonstrates a understanding of involved, making		a <u>reasonable</u> of the chemistry ng some vhich are relevant to showing that the		1 mark al monstrates a limit derstanding of the rolved. The candida me statement(s) w levant to the situa at at least a little emistry within the derstood.	ed chemistry ate has made hich are tion, showing of the
		Mass of hyd	1	$= \frac{2}{18} \times 6.08$	8g = 0.676g	ydroger	n) = 5.00 - F		0.676 = 1.081g O	
	C4H10O		Mass or %		3.24	-3q	0.676g		1.081g	
12a		Divide by RAN		by RAM	<u>3.243g</u> 12g mol ⁻¹ = 0.270 mol		0.676g 1g mol ⁻¹ = 0.676 mol		<u>1.081g</u> 16g mol ⁻¹ = 0.0676mol	
			Divide through b smallest number		• 0.0676mol		0.676mol 0.0676mol = 10		0.0676mol 0.0676mol 1	
		Empirical Formula		4		10		1		
12b	C-O stretch	Alkyl eth	ners C—O	bonds s [.]	tretch at	t wave	enumbe	r rango	e 1070-1150	cm ⁻¹
12c	C4H10O	$C_4H_{10}O = (4\times12)+(10\times1)+(1\times16) = 48 + 10 + 16 = 74$								
		Possible	C4H10O e	ther stru	uctures:					
	Ethoxyethane		Et	thoxyeth	hane		methoxy		ropane	
12d	Or			CH2OCH			CH₃OCŀ			
120	$C_2H_5OC_2H_5$		<u>Chemical Shift</u> 0.9-1.5 3.5-3.9	Group -CH3 R-CH2-O-	Relative Intens	(emical Shift).9-1.5 3.5-3.9	Group -CH3 R-CH2-0		-
			0.0-0.7						~ <u> </u>	